Sylodyn_® <mark>NC</mark> Fiche de données du matériau

Matériau élastomère PUR à structure cellulaire

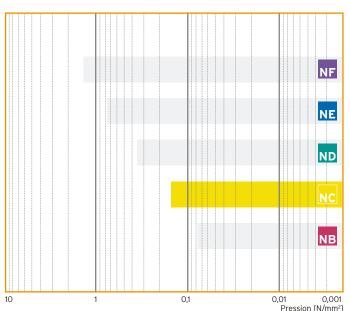
fermée (Polyuréthane)

Couleur jaune

Dimensions standard en stock

Épaisseur : 12,5 mm pour le Sylodyn® NC 12

25 mm pour le Sylodyn® NC 25


Rouleaux: 1,5 m de large, 5,0 m de long

Bandes: jusqu'à 1,5 m de large, jusqu'à 5 m de long

Autres dimensions et épaisseurs, pièces estampées ou façonnées sur demande.

Gamme d'application	Pression (dépendantes du facteur de forme)	Déflexion
Domaine d'application statique (charges statiques)	jusqu'à 0,15 N/mm²**	env. 10 %**
Domaine dynamique (charges statiques et dynamiques)	jusqu'à 0,25 N/mm²**	env. 20 %**
Pointes de charges (charges rares, de courte durée)	jusqu'à 3,0 N/mm²**	env. 60 %**

Gamme Sylodyn®

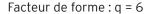
Propriétés du matériau		Procédures de contrôle	Remarque
Résistance à la rupture, essai de traction	1,5 N/mm²	DIN EN ISO 527-3/5/100*	valeur minimale
Allongement á la rupture, essai de traction	500 %	DIN EN ISO 527-3/5/100*	valeur minimale
Résistance au déchirement	5 N/mm	DIN 53515*	valeur minimale
Abrasion	550 mm ³	DIN 53516	charge : 10 N, face arrière
Coefficient de frottement (acier)	0,7	Getzner Werkstoffe	à sec
Coefficient de frottement (béton)	0,7	Getzner Werkstoffe	à sec
Compression set	< 5 %	EN ISO 1856	déformation de 50 %, à 23 °C, 70 h, 30 min. après relâchement de la charge
Module de cisaillement statique	0,21 N/mm ²	DIN ISO 1827*	pour une précontrainte de 0,150 N/mm²
Module de cisaillement dynamique	0,29 N/mm ²	DIN ISO 1827*	pour une précontrainte de 0,150 N/mm², 10 Hz
Facteur de perte mécanique	0,08	DIN 53513*	en fonction de la fréquence, de la pression et de l'amplitude (valeur indicative)
Élasticité de rebond	70 %	DIN 53573	tolérance : */- 10 %
Température d'utilisation	-30 à 70 °C		températures plus élevées possibles sur une courte durée
Inflammabilité	B2 classement E	DIN 4102 EN ISO 11925-2	normalement inflammable EN 13501-1
Résistivité	$> 10^{11} \Omega x cm$	DIN IEC 93	à sec
Conductibilité thermique	0,075 W/[m x K]	DIN 52612/1	

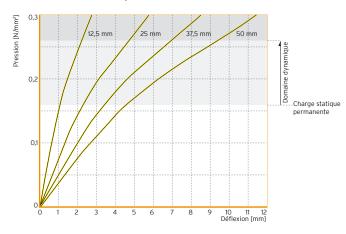
Autres spécifications techniques sur demande

* Mesure effectuée conformément à la norme

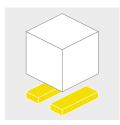
applicable ** Facteur de forme : q = 3 Toutes les informations et données s'appuient sur l'état actuel de nos connaissances. Elles peuvent être utilisées comme valeurs calculées ou valeurs indicatives. Elles sont soumises aux tolérances habituelles de fabrication et ne constituent en aucun cas des propriétés garanties. Sous réserve de modifications.

Pour plus d'informations générales, consultez la Directive 2062 de VDI ainsi que le Glossaire. Autres caractéristiques disponibles sur demande.

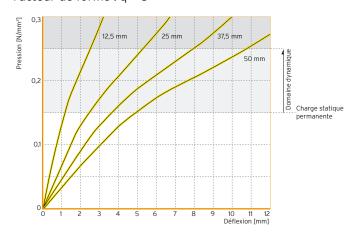

1



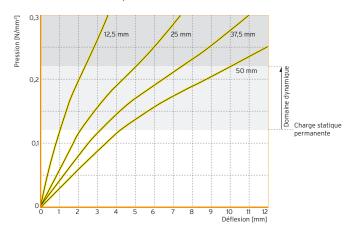
Appui surfacique



Courbes de déflexion

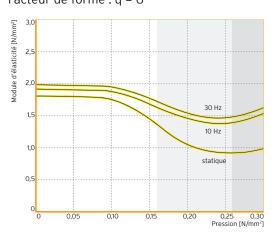


Appui par bandes


Facteur de forme : q = 3

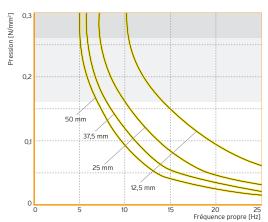
Appuis par plots

Facteur de forme : q = 1,5

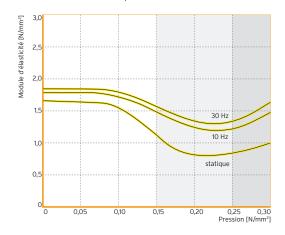


Courbe de déflexion quasi-statique avec une vitesse de déformation de 1 % de l'épaisseur par seconde ; essai effectué entre des plaques d'acier planes ; enregistrement au bout du

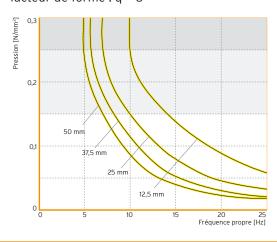
3° cycle Contrôle à température ambiente

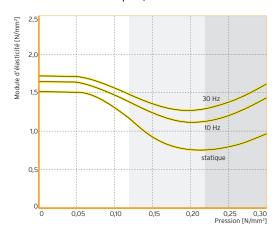

Module d'élasticité

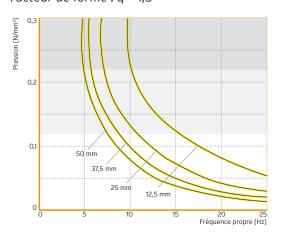
Facteur de forme : q = 6



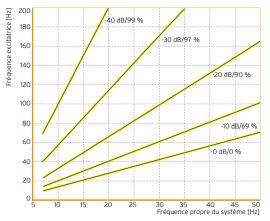
Fréquences propres


Facteur de forme : q = 6


facteur de forme : q = 3

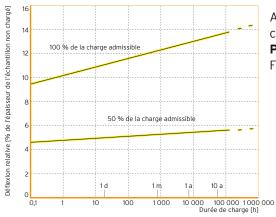

facteur de forme : q = 3

Facteur de forme : q = 1,5


Facteur de forme : q = 1,5

Le module d'élasticité statique est tangent à la courbe de déflexion. Le module d'élasticité dynamique est soumis à une excitation sinusoïdale à un niveau de vitesse de 100 dB v Re. $5x10^8$ m/s ; mesure effectuée conformément à la norme DIN 53513

Fréquence propre d'une système vibratoire à un degré de liberté comprenant une masse rigide et un appui élastique en Sylodyn® NC sur structure rigide ; paramètres : épaisseur de l'appui en Sylodyn


Isolation vibratoire

Réduction de la transmission des vibrations mécanique à l'aide d'un appui élastique en Sylodyn® NC sur une structure rigide

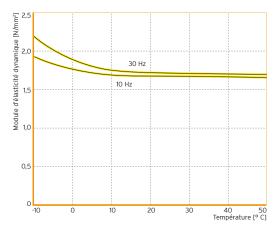
Paramètres : Coefficient de transmission en dB, degré d'isolation en %

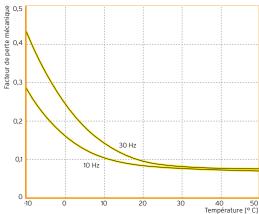

Résistance au fluage sous charge permanente

Augmentation de la déflexion sous charge constante

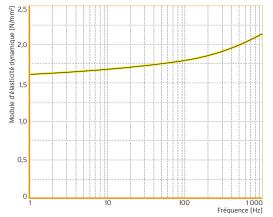
Paramètres : pression constante Facteur de forme : q = 3

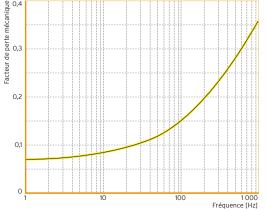
Évolution dans le temps du module d'élasticité dynamique sous charge



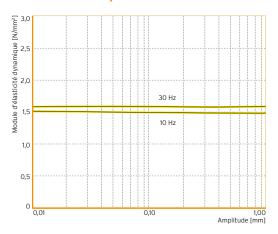

Modification du module d'élasticité dynamique sous charge constante (10 Hz)

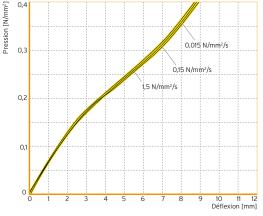
Paramètres : durée de charge facteur de forme : q = 3


Influence de la température



Essais DMA (analyse dynamique mécanique) ; mesures effectuées sous faible pression dans la zone linéaire de la courbe de déflexion


Influence de la fréquence



Essais DMA; courbe référentielle sous température de référence à 21°C; mesures effectuées sous faible pression dans la zone linéaire de la courbe de déflexion

Influence de l'amplitude

Influence de la vitesse de charge

Influence de l'amplitude : précontrainte sous charge statique permanente ; facteur de forme ; q = 3 ; épaisseur du matériau : 25 mm

Influence de la vitesse de charge : Facteur de forme ; g = 3, épaisseur du matériau : 25 mm

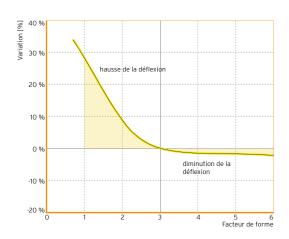
Facteur de forme

Le facteur de forme est une mesure géométrique pour la forme d'un appui en élastomère et est défini comme quotient de la surface chargée par rapport aux surfaces latérales de l'appui.

Forme rectangulaire :
$$q = \frac{LxI}{2xex(L+I)}$$

Le facteur de forme a une influence sur la déflexion et sur la valeur limite de la charge statique permanente.

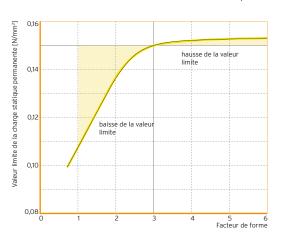
Pour un appui élastique en Sylodyn, les valeurs approximatives applicables sont :


Appui surfacique: facteur de forme > 6

Appui par bandes: facteur de forme entre 2 et 6

Appui par plots: facteur de forme < 2

Influence du facteur de forme sur la déflexion à charge statique permanente pour un matériau homogène


Valeur de référence : facteur de forme : q = 3

Surface chargée Surface latérale Surface latérale

Influence du facteur de forme sur la valeur limite de la charge statique permanente pour un matériau homogène

Valeur de référence : facteur de forme : q = 3

